Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 130, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689348

RESUMEN

BACKGROUND: Medulloblastomas (MBs) are one of the most common malignant brain tumor types in children. MB prognosis, despite improvement in recent years, still depends on clinical and biological risk factors. Metastasis is the leading cause of MB-related deaths, which highlights an unmet need for risk stratification and targeted therapy to improve clinical outcomes. Among the four molecular subgroups, sonic-hedgehog (SHH)-MB harbors clinical and genetic heterogeneity with a subset of high-risk cases. Recently, long non-coding (lnc)RNAs were implied to contribute to cancer malignant progression, but their role in MB remains unclear. This study aimed to identify pro-malignant lncRNAs that have prognostic and therapeutic significance in SHH-MB. METHODS: The Daoy SHH-MB cell line was engineered for ectopic expression of MYCN, a genetic signature of SHH-MB. MYCN-associated lncRNA genes were identified using RNA-sequencing data and were validated in SHH-MB cell lines, MB tissue samples, and patient cohort datasets. SHH-MB cells with genetic manipulation of the candidate lncRNA were evaluated for metastatic phenotypes in vitro, including cell migration, invasion, sphere formation, and expressions of stemness markers. An orthotopic xenograft mouse model was used to evaluate metastasis occurrence and survival. Finally, bioinformatic screening and in vitro assays were performed to explore downstream mechanisms. RESULTS: Elevated lncRNA LOXL1-AS1 expression was identified in MYCN-expressing Daoy cells and MYCN-amplified SHH-MB tumors, and was significantly associated with lower survival in SHH-MB patients. Functionally, LOXL1-AS1 promoted SHH-MB cell migration and cancer stemness in vitro. In mice, MYCN-expressing Daoy cells exhibited a high metastatic rate and adverse effects on survival, both of which were suppressed under LOLX1-AS1 perturbation. Integrative bioinformatic analyses revealed associations of LOXL1-AS1 with processes of cancer stemness, cell differentiation, and the epithelial-mesenchymal transition. LOXL1-AS1 positively regulated the expression of transforming growth factor (TGF)-ß2. Knockdown of TGF-ß2 in SHH-MB cells significantly abrogated their LOXL1-AS1-mediated prometastatic functions. CONCLUSIONS: This study proved the functional significance of LOXL1-AS1 in SHH-MB metastasis by its promotion of TGF-ß2-mediated cancer stem-like phenotypes, providing both prognostic and therapeutic potentials for targeting SHH-MB metastasis.


Asunto(s)
Proteínas Hedgehog , Meduloblastoma , Células Madre Neoplásicas , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , Animales , Ratones , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Metástasis de la Neoplasia , Fenotipo , Femenino , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Masculino , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Pronóstico , Movimiento Celular
2.
J Exp Clin Cancer Res ; 42(1): 346, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38124207

RESUMEN

BACKGROUND: Atypical teratoid rhabdoid tumors (ATRT) is a rare but aggressive malignancy in the central nervous system, predominantly occurring in early childhood. Despite aggressive treatment, the prognosis of ATRT patients remains poor. RRM2, a subunit of ribonucleotide reductase, has been reported as a biomarker for aggressiveness and poor prognostic conditions in several cancers. However, little is known about the role of RRM2 in ATRT. Uncovering the role of RRM2 in ATRT will further promote the development of feasible strategies and effective drugs to treat ATRT. METHODS: Expression of RRM2 was evaluated by molecular profiling analysis and was confirmed by IHC in both ATRT patients and PDX tissues. Follow-up in vitro studies used shRNA knockdown RRM2 in three different ATRT cells to elucidate the oncogenic role of RRM2. The efficacy of COH29, an RRM2 inhibitor, was assessed in vitro and in vivo. Western blot and RNA-sequencing were used to determine the mechanisms of RRM2 transcriptional activation in ATRT. RESULTS: RRM2 was found to be significantly overexpressed in multiple independent ATRT clinical cohorts through comprehensive bioinformatics and clinical data analysis in this study. The expression level of RRM2 was strongly correlated with poor survival rates in patients. In addition, we employed shRNAs to silence RRM2, which led to significantly decrease in ATRT colony formation, cell proliferation, and migration. In vitro experiments showed that treatment with COH29 resulted in similar but more pronounced inhibitory effect. Therefore, ATRT orthotopic mouse model was utilized to validate this finding, and COH29 treatment showed significant tumor growth suppression and prolong overall survival. Moreover, we provide evidence that COH29 treatment led to genomic instability, suppressed homologous recombinant DNA damage repair, and subsequently induced ATRT cell death through apoptosis in ATRT cells. CONCLUSIONS: Collectively, our study uncovers the oncogenic functions of RRM2 in ATRT cell lines, and highlights the therapeutic potential of targeting RRM2 in ATRT. The promising effect of COH29 on ATRT suggests its potential suitability for clinical trials as a novel therapeutic approach for ATRT.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Tumor Rabdoide , Animales , Preescolar , Humanos , Ratones , Apoptosis , Neoplasias del Sistema Nervioso Central/metabolismo , Reparación del ADN , Inhibidores Enzimáticos/uso terapéutico , Tumor Rabdoide/tratamiento farmacológico , Tumor Rabdoide/genética , Tumor Rabdoide/metabolismo
3.
Neuro Oncol ; 25(12): 2273-2286, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-37379234

RESUMEN

BACKGROUND: The prognosis for Li-Fraumeni syndrome (LFS) patients with medulloblastoma (MB) is poor. Comprehensive clinical data for this patient group is lacking, challenging the development of novel therapeutic strategies. Here, we present clinical and molecular data on a retrospective cohort of pediatric LFS MB patients. METHODS: In this multinational, multicenter retrospective cohort study, LFS patients under 21 years with MB and class 5 or class 4 constitutional TP53 variants were included. TP53 mutation status, methylation subgroup, treatment, progression free- (PFS) and overall survival (OS), recurrence patterns, and incidence of subsequent neoplasms were evaluated. RESULTS: The study evaluated 47 LFS individuals diagnosed with MB, mainly classified as DNA methylation subgroup "SHH_3" (86%). The majority (74%) of constitutional TP53 variants represented missense variants. The 2- and 5-year (y-) PFS were 36% and 20%, and 2- and 5y-OS were 53% and 23%, respectively. Patients who received postoperative radiotherapy (RT) (2y-PFS: 44%, 2y-OS: 60%) or chemotherapy before RT (2y-PFS: 32%, 2y-OS: 48%) had significantly better clinical outcome then patients who were not treated with RT (2y-PFS: 0%, 2y-OS: 25%). Patients treated according to protocols including high-intensity chemotherapy and patients who received only maintenance-type chemotherapy showed similar outcomes (2y-PFS: 42% and 35%, 2y-OS: 68% and 53%, respectively). CONCLUSIONS: LFS MB patients have a dismal prognosis. In the presented cohort use of RT significantly increased survival rates, whereas chemotherapy intensity did not influence their clinical outcome. Prospective collection of clinical data and development of novel treatments are required to improve the outcome of LFS MB patients.


Asunto(s)
Neoplasias Cerebelosas , Síndrome de Li-Fraumeni , Meduloblastoma , Niño , Humanos , Síndrome de Li-Fraumeni/complicaciones , Síndrome de Li-Fraumeni/genética , Síndrome de Li-Fraumeni/terapia , Meduloblastoma/terapia , Meduloblastoma/tratamiento farmacológico , Estudios Retrospectivos , Estudios Prospectivos , Neoplasias Cerebelosas/terapia , Neoplasias Cerebelosas/tratamiento farmacológico , Mutación de Línea Germinal , Proteína p53 Supresora de Tumor/genética
4.
Cancers (Basel) ; 14(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36358838

RESUMEN

Medulloblastoma (MB) was classified into four molecular subgroups: WNT, SHH, group 3, and group 4. In 2017, 12 subtypes within 4 subgroups and 8 subtypes within non-WNT/non-SHH subgroups according to the differences of clinical features and biology were announced. In this study, we aimed to identify the heterogeneity of molecular features for discovering subtype specific factors linked to diagnosis and prognosis. We retrieved 70 MBs in children to perform RNA sequencing and a DNA methylation array in Taiwan. Integrated with clinical annotations, we achieved classification of 12 subtypes of pediatric MBs in our cohort series with reference to the other reported series. We analyzed the correlation of cell type enrichment in SHH MBs and found that M2 macrophages were enriched in SHH ß, which related to good outcomes of SHH MBs. The high infiltration of M2 macrophages may be an indicator of a favorable prognosis and therapeutic target for SHH MBs. Furthermore, C11orf95-RELA fusion was observed to be associated with recurrence and a poor prognosis. These results will contribute to the establishment of a molecular diagnosis linked to prognostic indicators of relevance and help to promote molecular-based risk stratified treatment for MBs in children.

5.
Pharmaceutics ; 14(6)2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35745780

RESUMEN

Pulsed ultrasound combined with microbubbles use can disrupt the blood-brain barrier (BBB) temporarily; this technique opens a temporal window to deliver large therapeutic molecules into brain tissue. There are published studies to discuss the efficacy and safety of the different ultrasound parameters, microbubble dosages and sizes, and sonication schemes on BBB disruption, but optimal the paradigm is still under investigation. Our study is aimed to investigate how different sonication parameters, time, and microbubble dose can affect BBB disruption, the dynamics of BBB disruption, and the efficacy of different sonication schemes on BBB disruption. Method: We used pulsed weakly focused ultrasound to open the BBB of C57/B6 mice. Evans blue dye (EBD) was used to determine the degree of BBB disruption. With a given acoustic pressure of 0.56 MPa and pulse repetitive frequency of 1 Hz, burst lengths of 10 ms to 50 ms, microbubbles of 100 µL/kg to 300 µL/kg, and sonication times of 60 s to 150 s were used to open the BBB for parameter study. Brain EBD accumulation was measured at 1, 4, and 24 h after sonication for the time-response relationship study; EBD of 100 mg/kg to 200 mg/kg was administered for the dose-response relationship study; EBD injection 0 to 6 h after sonication was performed for the BBB disruption dynamic study; brain EBD accumulation induced by one sonication and two sonications was investigated to study the effectiveness on BBB disruption; and a histology study was performed for brain tissue damage evaluation. Results: Pulsed weakly focused ultrasound opens the BBB extensively. Longer burst lengths and a larger microbubble dose result in a higher degree of BBB disruption; a sonication time longer than 60 s did not increase BBB disruption; brain EBD accumulation peaks 1 h after sonication and remains 81% of the peak level 24 h after sonication; the EBD dose administered correlates with brain EBD accumulation; BBB disruption decreases as time goes on after sonication and lasts for 6 h at least; and brain EBD accumulation induced by two sonication increases 74.8% of that induced by one sonication. There was limited adverse effects associated with sonication, including petechial hemorrhages and mild neuronal degeneration. Conclusions: BBB can be opened extensively and reversibly by pulsed weakly focused ultrasound with limited brain tissue damage. Since EBD combines with albumin in plasma to form a conjugate of 83 kDa, these results may simulate ultrasound-induced brain delivery of therapeutic molecules of this size scale. The result of our study may contribute to finding the optimal paradigm of focused ultrasound-induced BBB disruption.

6.
Int J Mol Sci ; 23(9)2022 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-35563678

RESUMEN

Medulloblastoma (MB) is the most common malignant brain tumor in children. It is classified into core molecular subgroups (wingless activated (WNT), sonic hedgehog activated (SHH), Group 3 (G3), and Group 4 (G4)). In this study, we analyzed the tumor-infiltrating immune cells and cytokine profiles of 70 MB patients in Taiwan using transcriptome data. In parallel, immune cell composition in tumors from the SickKids cohort dataset was also analyzed to confirm the findings. The clinical cohort data showed the WNT and G4 MB patients had lower recurrence rates and better 5-year relapse-free survival (RFP) compared with the SHH and G3 MB patients, among the four subgroups of MB. We found tumor-infiltrating B cells (TIL-Bs) enriched in the G4 subgroups in the Taiwanese MB patients and the SickKids cohort dataset. In the G4 subgroups, the patients with a high level of TIL-Bs had better 5-year overall survival. Mast cells presented in G4 MB tumors were positively correlated with TIL-Bs. Higher levels of CXCL13, IL-36γ, and CCL27 were found compared to other subgroups or normal brains. These three cytokines, B cells and mast cells contributed to the unique immune microenvironment in G4 MB tumors. Therefore, B-cell enrichment is a G4-subgroup-specific immune signature and the presence of B cells may be an indicator of a better prognosis in G4 MB patients.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Niño , Proteínas Hedgehog/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Recurrencia Local de Neoplasia , Transcriptoma , Microambiente Tumoral/genética
7.
Sci Rep ; 11(1): 23282, 2021 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-34857809

RESUMEN

Medulloblastoma is the most common embryonic brain tumor in children. We investigated a cohort of 52 Asian medulloblastoma patients aged between 0 and 19 years old, who received surgical resections and post-resection treatments in the Taipei Medical University Hospital and the Taipei Veterans General Hospital. Genome-wide RNA sequencing was performed on fresh-frozen surgical tissues. These data were analyzed using the CIBERSORTx immune deconvolution software. Two external clinical and molecular datasets from United States (n = 62) and Canada (n = 763) were used to evaluate the transferability of the gene-signature scores across ethnic populations. The abundance of 13 genes, including DLL1, are significantly associated with overall survival (All Cox regression P < 0.001). A gene-signature score was derived from the deep transcriptome, capable of indicating patients' subsequent tumor recurrence (Hazard Ratio [HR] 1.645, confidence interval [CI] 1.337-2.025, P < 0.001) and mortality (HR 2.720, CI 1.798-4.112, P < 0.001). After the adjustment of baseline clinical factors, the score remains indicative of recurrence-free survival (HR 1.604, CI 1.292-1.992, P < 0.001) and overall survival (HR 2.781, CI 1.762-4.390, P < 0.001). Patients stratified by this score manifest not only distinct prognosis but also different molecular characteristics: Notch signaling ligands and receptors are comparatively overexpressed in patients with poorer prognosis, while tumor infiltrating natural killer cells are more abundant in patients with better prognosis. Additionally, immunohistochemical staining showed the DLL1 protein, a major ligand in the Notch signaling pathway, and the NCAM1 protein, a representative biomarker of natural killer cells, are present in the surgical tissues of patients of four molecular subgroups, WNT, SHH, Group 3 and Group 4. NCAM1 RNA level is also positively associated with the mutation burden in tumor (P = 0.023). The gene-signature score is validated successfully in the Canadian cohort (P = 0.009) as well as its three molecular subgroups (SHH, Group 3 and Group 4; P = 0.047, 0.018 and 0.040 respectively). In conclusion, pediatric medullablastoma patients can be stratified by gene-signature scores with distinct prognosis and molecular characteristics. Ligands and receptors of the Notch signaling pathway are overexpressed in the patient stratum with poorer prognosis. Tumor infiltrating natural killer cells are more abundant in the patient stratum with better prognosis.


Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/genética , Expresión Génica , Células Asesinas Naturales/patología , Linfocitos Infiltrantes de Tumor/patología , Meduloblastoma/genética , Meduloblastoma/patología , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología , Adolescente , Factores de Edad , Neoplasias Encefálicas/cirugía , Antígeno CD56/genética , Antígeno CD56/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Meduloblastoma/cirugía , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Pronóstico , Análisis de Secuencia de ARN/métodos , Taiwán , Adulto Joven
8.
PLoS One ; 16(7): e0255500, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34324588

RESUMEN

PURPOSE: Medulloblastoma (MB) is a highly malignant pediatric brain tumor. In the latest classification, medulloblastoma is divided into four distinct groups: wingless (WNT), sonic hedgehog (SHH), Group 3, and Group 4. We analyzed the magnetic resonance imaging radiomics features to find the imaging surrogates of the 4 molecular subgroups of MB. MATERIAL AND METHODS: Frozen tissue, imaging data, and clinical data of 38 patients with medulloblastoma were included from Taipei Medical University Hospital and Taipei Veterans General Hospital. Molecular clustering was performed based on the gene expression level of 22 subgroup-specific signature genes. A total 253 magnetic resonance imaging radiomic features were generated from each subject for comparison between different molecular subgroups. RESULTS: Our cohort consisted of 7 (18.4%) patients with WNT medulloblastoma, 12 (31.6%) with SHH tumor, 8 (21.1%) with Group 3 tumor, and 11 (28.9%) with Group 4 tumor. 8 radiomics gray-level co-occurrence matrix texture (GLCM) features were significantly different between 4 molecular subgroups of MB. In addition, for tumors with higher values in a gray-level run length matrix feature-Short Run Low Gray-Level Emphasis, patients have shorter survival times than patients with low values of this feature (p = 0.04). The receiver operating characteristic analysis revealed optimal performance of the preliminary prediction model based on GLCM features for predicting WNT, Group 3, and Group 4 MB (area under the curve = 0.82, 0.72, and 0.78, respectively). CONCLUSION: The preliminary result revealed that 8 contrast-enhanced T1-weighted imaging texture features were significantly different between 4 molecular subgroups of MB. Together with the prediction models, the radiomics features may provide suggestions for stratifying patients with MB into different risk groups.


Asunto(s)
Neoplasias Cerebelosas , Imagen por Resonancia Magnética , Meduloblastoma , Adolescente , Niño , Estudios de Cohortes , Humanos , Masculino , Estudios Retrospectivos , Factores de Riesgo
9.
Cancers (Basel) ; 12(3)2020 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-32235770

RESUMEN

Atypical teratoid rhabdoid tumors (ATRTs) are among the most malignant brain tumors in early childhood and remain incurable. Myc-ATRT is driven by the Myc oncogene, which directly controls the intracellular protein synthesis rate. Proteasome inhibitor bortezomib (BTZ) was approved by the Food and Drug Administration as a primary treatment for multiple myeloma. This study aimed to determine whether the upregulation of protein synthesis and proteasome degradation in Myc-ATRTs increases tumor cell sensitivity to BTZ. We performed differential gene expression and gene set enrichment analysis on matched primary and recurrent patient-derived xenograft (PDX) samples from an infant with ATRT. Concomitant upregulation of the Myc pathway, protein synthesis and proteasome degradation were identified in recurrent ATRTs. Additionally, we found the proteasome-encoding genes were highly expressed in ATRTs compared with in normal brain tissues, correlated with the malignancy of tumor cells and were essential for tumor cell survival. BTZ inhibited proliferation and induced apoptosis through the accumulation of p53 in three human Myc-ATRT cell lines (PDX-derived tumor cell line Re1-P6, BT-12 and CHLA-266). Furthermore, BTZ inhibited tumor growth and prolonged survival in Myc-ATRT orthotopic xenograft mice. Our findings suggest that BTZ may be a promising targeted therapy for Myc-ATRTs.

10.
Cancers (Basel) ; 12(3)2020 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-32168907

RESUMEN

In 2016, a project was initiated in Taiwan to adopt molecular diagnosis of childhood medulloblastoma (MB). In this study, we aimed to identify a molecular-clinical correlation and somatic mutation for exploring risk-adapted treatment, drug targets, and potential genetic predisposition. In total, 52 frozen tumor tissues of childhood MBs were collected. RNA sequencing (RNA-Seq) and DNA methylation array data were generated. Molecular subgrouping and clinical correlation analysis were performed. An adjusted Heidelberg risk stratification scheme was defined for updated clinical risk stratification. We selected 51 genes for somatic variant calling using RNA-Seq data. Relevant clinical findings were defined. Potential drug targets and genetic predispositions were explored. Four core molecular subgroups (WNT, SHH, Group 3, and Group 4) were identified. Genetic backgrounds of metastasis at diagnosis and extent of tumor resection were observed. The adjusted Heidelberg scheme showed its applicability. Potential drug targets were detected in the pathways of DNA damage response. Among the 10 patients with SHH MBs analyzed using whole exome sequencing studies, five patients exhibited potential genetic predispositions and four patients had relevant germline mutations. The findings of this study provide valuable information for updated risk adapted treatment and personalized care of childhood MBs in our cohort series and in Taiwan.

11.
Int J Endocrinol ; 2015: 202513, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25954309

RESUMEN

Growth arrest-specific 6 (GAS6), a vitamin K-dependent protein, plays a role in the survival, proliferation, migration, differentiation, adhesion, and apoptosis of cells. GAS6 is highly expressed during growth arrest, followed by a sharp decrease during differentiation in adipocytes. The functions of GAS6 signaling are limited to TAM (Tyro3, Axl, and Mer) receptors and are dependent on the cell type. While many studies have focused on the role of GAS6 in inflammation and cancer, only few studies focused on its roles of GAS6 in obesity. Accordingly, the participation of GAS6 in the progression of obesity remains controversial. In this review, we summarize the results of current studies from clinical and basic research to elucidate the possible role of GAS6 signaling in obesity and associated disorders. In addition, this summary may offer a direction to develop clinical therapeutic strategies for the prevention and treatment of obesity and related complications.

12.
Biol Open ; 1(6): 559-65, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23213448

RESUMEN

The primary cilium is a microtubule-based structure protruded from the basal body analogous to the centriole. CPAP (centrosomal P4.1-associated protein) has previously been reported to be a cell cycle-regulated protein that controls centriole length. Mutations in CPAP cause primary microcephaly (MCPH) in humans. Here, using a cell-based system that we established to monitor cilia formation in neuronal CAD (Cath.a-differentiated) cells and hippocampal neurons, we found that CPAP is required for cilia biogenesis. Overexpression of wild-type CPAP promoted cilia formation and induced longer cilia. In contrast, an exogenously expressed CPAP-377EE mutant that lacks tubulin-dimer binding significantly inhibited cilia formation and caused cilia shortening. Furthermore, depletion of CPAP inhibited ciliogenesis and such effect was effectively rescued by expression of wild-type CPAP, but not by the CPAP-377EE mutant. Taken together, our results suggest that CPAP is a positive regulator of ciliogenesis whose intrinsic tubulin-dimer binding activity is required for cilia formation in neuronal cells.

13.
EMBO J ; 30(23): 4790-804, 2011 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-22020124

RESUMEN

Centriole duplication involves the growth of a procentriole next to the parental centriole. Mutations in STIL and CPAP/CENPJ cause primary microcephaly (MCPH). Here, we show that human STIL has an asymmetric localization to the daughter centriole and is required for procentriole formation. STIL levels oscillate during the cell cycle. Interestingly, STIL interacts directly with CPAP and forms a complex with hSAS6. A natural mutation of CPAP (E1235V) that causes MCPH in humans leads to significantly lower binding to STIL. Overexpression of STIL induced the formation of multiple procentrioles around the parental centriole. STIL depletion inhibited normal centriole duplication, Plk4-induced centriole amplification, and CPAP-induced centriole elongation, and resulted in a failure to localize hSAS6 and CPAP to the base of the nascent procentriole. Furthermore, hSAS6 depletion hindered STIL targeting to the procentriole, implying that STIL and hSAS6 are mutually dependent for their centriolar localization. Together, our results indicate that the two MCPH-associated proteins STIL and CPAP interact with each other and are required for procentriole formation, implying a central role of centriole biogenesis in MCPH.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Centriolos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Microcefalia/fisiopatología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Bovinos , Ciclo Celular/fisiología , División Celular/fisiología , Células Cultivadas , Centriolos/genética , Centriolos/metabolismo , Centriolos/patología , Células HEK293 , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Microcefalia/genética , Microscopía Confocal , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Unión Proteica
14.
Nat Cell Biol ; 11(7): 825-31, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19503075

RESUMEN

Centriole duplication involves the growing of a procentriole (progeny centriole) next to the proximal end of each pre-existing centriole (parental centriole). The molecular mechanisms that regulate procentriole elongation remain obscure. We show here that expression of the centriolar protein CPAP (centrosomal P4.1-associated protein) is carefully regulated during the cell cycle, with the protein being degraded in late mitosis. Depletion of CPAP inhibited centrosome duplication, whereas excess CPAP induced the formation of elongated procentriole-like structures (PLSs), which contain stable microtubules and several centriolar proteins. Ultrastructural analysis revealed that these structures are similar to procentrioles with elongated microtubules. Overexpression of a CPAP mutant (CPAP-377EE) that does not bind to tubulin dimers significantly inhibited the formation of CPAP-induced PLSs. Together, these results suggest that CPAP is a new regulator of centriole length and its intrinsic tubulin-dimer binding activity is required for procentriole elongation.


Asunto(s)
Ciclo Celular/fisiología , Centriolos/metabolismo , Proteínas Asociadas a Microtúbulos/fisiología , Ciclo Celular/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Línea Celular , Línea Celular Tumoral , Citometría de Flujo , Células HeLa , Humanos , Immunoblotting , Inmunoprecipitación , Microscopía Confocal , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitosis/genética , Mitosis/fisiología , Modelos Biológicos , ARN Interferente Pequeño , Tubulina (Proteína)/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...